Characterization of single heat-activated Bacillus spores using laser tweezers Raman spectroscopy.
نویسندگان
چکیده
Heat activation of dormant bacterial spores is a short treatment at a sublethal temperature that potentiates and synchronizes spore germination. In this paper, laser tweezers Raman spectroscopy (LTRS) was used to study the heat activation of single spores of Bacillus cereus and Bacillus subtilis. We measured the Raman spectra of single spores without treatment, during heat activation at 65 degrees C (B. cereus) or 70 degrees C (B. subtilis), and following heat activation and cooling to 25 degrees C. Principle component analysis (PCA) was applied to discriminate among the three groups of spores based on their Raman spectra. The results indicated that: (1) there are large changes in the Raman bands of Ca-DPA and protein for both B. cereus and B. subtilis spores during heat activation, indicative of changes in spore core state and partial protein denaturation at the heat activation temperatures; (2) these spectral changes become smaller once the heated spores are cooled, consistent with heat activation being reversible; (3) minor spectral differences between untreated and heat-activated and cooled spores can be discriminated by PCA based on non-polarized and polarized Raman spectra; and (4) analysis based on polarized Raman spectra reveals that partial denaturation of protein during heat activation is mainly observed in the vertically polarized component.
منابع مشابه
Characterization of wet-heat inactivation of single spores of bacillus species by dual-trap Raman spectroscopy and elastic light scattering.
Dual-trap laser tweezers Raman spectroscopy (LTRS) and elastic light scattering (ELS) were used to investigate dynamic processes during high-temperature treatment of individual spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis in water. Major conclusions from these studies included the following. (i) After spores of all three species were added to water at 80 to 90 degrees C...
متن کاملReal-time detection of kinetic germination and heterogeneity of single Bacillus spores by laser tweezers Raman spectroscopy.
Germination is the process by which a dormant spore returns to its vegetative state when exposed to suitable conditions. We report on the real-time detection of kinetic germination and heterogeneity of single Bacillus thuringiensis spores in an aqueous solution by monitoring the calcium dipicolinate (CaDPA) biomarker with laser tweezers Raman spectroscopy (LTRS). A single B. thuringiensis spore...
متن کاملMonitoring the wet-heat inactivation dynamics of single spores of Bacillus species by using Raman tweezers, differential interference contrast microscopy, and nucleic acid dye fluorescence microscopy.
Dynamic processes during wet-heat treatment of individual spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis at 80 to 90°C were investigated using dual-trap Raman spectroscopy, differential interference contrast (DIC) microscopy, and nucleic acid stain (SYTO 16) fluorescence microscopy. During spore wet-heat treatment, while the spores' 1:1 chelate of Ca(2+) with dipicolinic ...
متن کاملLevels of Ca2+-dipicolinic acid in individual bacillus spores determined using microfluidic Raman tweezers.
Pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]) in a 1:1 chelate with calcium ion (Ca-DPA) comprises 5 to 15% of the dry weight of spores of Bacillus species. Ca-DPA is important in spore resistance to many environmental stresses and in spore stability, and Ca-DPA levels in spore populations can vary with spore species/strains, as well as with sporulation conditions. We have measured le...
متن کاملCharacterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy, and optical tweezers.
We present a methodology that combines external phase contrast microscopy, Raman spectroscopy, and optical tweezers to monitor a variety of changes during the germination of single Bacillus cereus spores in both nutrient (l-alanine) and non-nutrient (Ca-dipicolinic acid (DPA)) germinants with a temporal resolution of approximately 2 s. Phase contrast microscopy assesses changes in refractility ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 17 19 شماره
صفحات -
تاریخ انتشار 2009